Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Current research on ferroelectric polymers centers predominantly on poly(vinylidene fluoride) (PVDF)–based fluoropolymers because of their superior performance. However, they are considered “forever chemicals” with environmental concerns. We describe a family of rationally designed fluorine-free ferroelectric polymers, featuring a polyoxypropylene main chain and disulfonyl alkyl side chains with a C3 spacer: −SO2CH2CHRCH2SO2− (R = −H or −CH3). Both experimental and simulation results demonstrate that strong dipole-dipole interactions between neighboring disulfonyl groups induce ferroelectric ordering in the condensed state, which can be tailored by changing the R group: ferroelectric for R = −H or relaxor ferroelectric for R = −CH3. At low electric fields, the relaxor polymer exhibits electroactuation and electrocaloric performance comparable with those of state-of-the-art PVDF-based tetrapolymers.more » « lessFree, publicly-accessible full text available July 3, 2026
- 
            Abstract It has been well-accepted that heat conduction in solids is mainly mediated by electrons and phonons. Recently, there has been a strong emerging interest in the contribution of various polaritons, quasi-particles resulting from the coupling between electromagnetic waves and different excitations in solids, to heat conduction. Traditionally, the polaritonic effect on conduction has been largely neglected because of the low number density of polaritons. However, it has been recently predicted and experimentally confirmed that polaritons could play significant roles in heat conduction in polar nanostructures. Since the transport characteristics of polaritons are very different from those of electrons and phonons, polariton-mediated heat conduction provides new opportunities for manipulating heat flow in solid-state devices for more efficient heat dissipation or energy conversion. In view of the rapid growth of polariton-mediated heat conduction, especially by phonon polaritons, here we review the recent progress in this field and provide perspectives for challenges and opportunities. Graphical abstractmore » « less
- 
            Carbon slurries have been used as “flowable electrodes” in various electrochemical systems, and the slurry flow characteristics play an important role in the system electrochemical performance. For example, in an electrochemical flow capacitor (EFC), activated carbon particles must pass electrical charge from a stationary electrode to surrounding particles via particle-electrode and particle–particle interactions to store energy in the electric double layer. So far, particle behaviors under a continuous flow condition have not been observed due to the slurry's opacity, and studies of the device's performance thus have been mainly on a bulk level. To understand the relation between the hydrodynamic behavior and the electrochemical performance of carbon slurries, we have constructed a microfluidic EFC (μ-EFC) using transparent materials. The μ-EFC allows for direct observation of particle interactions in flowing carbon slurries using high-speed camera recording, and concurrent measurements of the electrochemical performance via chronoamperometry. The results indicate an interesting dependence of the particle cluster interaction on the flowrate, and its effect on the slurry charging/discharging behavior. It is found that an optimal flowrate could exist for better electrochemical performance.more » « less
- 
            Ziemelis, Karl (Ed.)Surface waves can lead to intriguing transport phenomena. In particular, surface phonon polaritons (SPhPs), which result from coupling between infrared light and optical phonons, have been predicted to contribute to heat conduction along polar thin films and nanowires [1]. However, experimental efforts thus far suggest only very limited SPhP contributions [2-5]. Through systematic measurements of thermal transport along the same 3C-SiC nanowires with and without a gold coating on the end(s) that serves to launch SPhPs, here we show that thermally excited SPhPs can significantly enhance the thermal conductivity of the uncoated portion of these wires. The extracted pre-decay SPhP thermal conductance is over two orders of magnitude higher than the Landauer limit predicted based on equilibrium Bose-Einstein distributions. We attribute the remarkable SPhP conductance to the efficient launching of non-equilibrium SPhPs from the gold-coated portion into the uncoated SiC nanowires, which is strongly supported by the observation that the SPhP-mediated thermal conductivity is proportional to the length of the gold coating(s). The reported discoveries open the door for modulating energy transport in solids via introducing SPhPs, which can effectively counteract the classical size effect in many technologically important films and improve the design of solid-state devices.more » « less
- 
            Perforated microelectrode arrays (pMEAs) have become essential tools for ex vivo retinal electrophysiological studies. pMEAs increase the nutrient supply to the explant and alleviate the accentuated curvature of the retina, allowing for long-term culture and intimate contacts between the retina and electrodes for electrophysiological measurements. However, commercial pMEAs are not compatible with in situ high-resolution optical imaging and lack the capability of controlling the local microenvironment, which are highly desirable features for relating function to anatomy and probing physiological and pathological mechanisms in retina. Here we report on microfluidic pMEAs (μpMEAs) that combine transparent graphene electrodes and the capability of locally delivering chemical stimulation. We demonstrate the potential of μpMEAs by measuring the electrical response of ganglion cells to locally delivered high K + stimulation under controlled microenvironments. Importantly, the capability for high-resolution confocal imaging of the retina tissue on top of the graphene electrodes allows for further analyses of the electrical signal source. The new capabilities provided by μpMEAs could allow for retinal electrophysiology assays to address key questions in retinal circuitry studies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
